On the asymptotic behavior for convection-diffusion equations associated to higher order elliptic operators in divergence form.
Kirane, Mokhtar ; Qafsaoui, Mahmoud
Revista Matemática de la Universidad Complutense de Madrid, Tome 15 (2002), p. 585-598 / Harvested from Biblioteca Digital de Matemáticas

We consider the linear convection-diffusion equation associated to higher order elliptic operators

⎧  ut + Ltu = a∇u   on Rnx(0,∞)

⎩  u(0) = u0 ∈ L1(Rn),

where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth bounded measurable coefficients on Rn. The aim of this paper is to study the asymptotic behavior, in Lp (1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of the convection-diffusion equation when t tends to ∞.

Publié le : 2002-01-01
DMLE-ID : 829
@article{urn:eudml:doc:44362,
     title = {On the asymptotic behavior for convection-diffusion equations associated to higher order elliptic operators in divergence form.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {15},
     year = {2002},
     pages = {585-598},
     zbl = {1031.35052},
     mrnumber = {MR1951827},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44362}
}
Kirane, Mokhtar; Qafsaoui, Mahmoud. On the asymptotic behavior for convection-diffusion equations associated to higher order elliptic operators in divergence form.. Revista Matemática de la Universidad Complutense de Madrid, Tome 15 (2002) pp. 585-598. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44362/