We consider a special type of a one-dimensional quasilinear wave equation wtt - phi (wt / wx) wxx = 0 in a bounded domain with Dirichlet boundary conditions and show that classical solutions blow up in finite time even for small initial data in some norm.
@article{urn:eudml:doc:44357,
title = {Breakdown in finite time of solutions to a one-dimensional wave equation.},
journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
volume = {13},
year = {2000},
pages = {413-422},
zbl = {0979.35104},
mrnumber = {MR1822123},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44357}
}
Kirane, Mokhtar; Messaoudi, Salim A. Breakdown in finite time of solutions to a one-dimensional wave equation.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 413-422. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44357/