A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature.
Bazanfaré, Mahaman
Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000), p. 399-409 / Harvested from Biblioteca Digital de Matemáticas

In this paper we establish a volume comparison theorem for cocentric metric balls at arbitrary point for manifolds with asymptotically nonnegative Ricci curvature, which will allow us to prove the finiteness of the number of ends.

Publié le : 2000-01-01
DMLE-ID : 822
@article{urn:eudml:doc:44355,
     title = {A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {13},
     year = {2000},
     pages = {399-409},
     zbl = {1027.53032},
     mrnumber = {MR1822122},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44355}
}
Bazanfaré, Mahaman. A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 399-409. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44355/