In this paper we establish a volume comparison theorem for cocentric metric balls at arbitrary point for manifolds with asymptotically nonnegative Ricci curvature, which will allow us to prove the finiteness of the number of ends.
@article{urn:eudml:doc:44355,
title = {A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature.},
journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
volume = {13},
year = {2000},
pages = {399-409},
zbl = {1027.53032},
mrnumber = {MR1822122},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44355}
}
Bazanfaré, Mahaman. A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature.. Revista Matemática de la Universidad Complutense de Madrid, Tome 13 (2000) pp. 399-409. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44355/