We examine the p-harmonic equation div |grad u|(p-2). grad u = mu, where mu is a bounded Radon measure. We determine a range of p's for which solutions to the equation verify an a priori estimate. For such p's we also prove a higher integrability result.
@article{urn:eudml:doc:44325, title = {A regularity result for p-harmonic equations with measure data.}, journal = {Collectanea Mathematica}, volume = {55}, year = {2004}, pages = {11-19}, zbl = {1148.35320}, mrnumber = {MR2028177}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44325} }
Carozza, Menita; Passarelli di Napoli, Antonia. A regularity result for p-harmonic equations with measure data.. Collectanea Mathematica, Tome 55 (2004) pp. 11-19. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44325/