Cyclic branched coverings of knots and homology spheres.
González-Acuña, Francisco ; Short, Hamish
Revista Matemática de la Universidad Complutense de Madrid, Tome 4 (1991), p. 97-120 / Harvested from Biblioteca Digital de Matemáticas

We study cyclic coverings of S3 branched over a knot, and study conditions under which the covering is a homology sphere. We show that the sequence of orders of the first homology groups for a given knot is either periodic of tends to infinity with the order of the covering, a result recently obtained independently by Riley. From our computations it follows that, if surgery on a knot k with less than 10 crossings produces a manifold with cyclic fundamental group, then k is a torus knot.

Publié le : 1991-01-01
DMLE-ID : 776
@article{urn:eudml:doc:44303,
     title = {Cyclic branched coverings of knots and homology spheres.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {4},
     year = {1991},
     pages = {97-120},
     zbl = {0756.57001},
     mrnumber = {MR1142552},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44303}
}
González-Acuña, Francisco; Short, Hamish. Cyclic branched coverings of knots and homology spheres.. Revista Matemática de la Universidad Complutense de Madrid, Tome 4 (1991) pp. 97-120. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44303/