Non-maximal cyclic group actions on compact Riemann surfaces.
Singerman, David ; Watson, Paul
Revista Matemática de la Universidad Complutense de Madrid, Tome 10 (1997), p. 423-439 / Harvested from Biblioteca Digital de Matemáticas

We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).

Publié le : 1997-01-01
DMLE-ID : 752
@article{urn:eudml:doc:44277,
     title = {Non-maximal cyclic group actions on compact Riemann surfaces.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {10},
     year = {1997},
     pages = {423-439},
     zbl = {0903.20027},
     mrnumber = {MR1605674},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44277}
}
Singerman, David; Watson, Paul. Non-maximal cyclic group actions on compact Riemann surfaces.. Revista Matemática de la Universidad Complutense de Madrid, Tome 10 (1997) pp. 423-439. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44277/