We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).
@article{urn:eudml:doc:44277, title = {Non-maximal cyclic group actions on compact Riemann surfaces.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {10}, year = {1997}, pages = {423-439}, zbl = {0903.20027}, mrnumber = {MR1605674}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44277} }
Singerman, David; Watson, Paul. Non-maximal cyclic group actions on compact Riemann surfaces.. Revista Matemática de la Universidad Complutense de Madrid, Tome 10 (1997) pp. 423-439. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44277/