The paper is devoted to algebraic surfaces which can be obtained using a simple combinatorial procedure called the T-construction. The class of T-surfaces is sufficiently rich: for example, we construct T-surfaces of an arbitrary degree in RP³ which are M-surfaces. We also present a construction of T-surfaces in RP³ with dim H1 (RX; Z/2) > h1, 1(CX), where RX and CX are the real and the complex point sets of the surface.
@article{urn:eudml:doc:44256, title = {Topology of real algebraic T-surfaces.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {10}, year = {1997}, pages = {131-152}, zbl = {0904.14033}, mrnumber = {MR1485296}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44256} }
Itenberg, Ilia. Topology of real algebraic T-surfaces.. Revista Matemática de la Universidad Complutense de Madrid, Tome 10 (1997) pp. 131-152. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44256/