In this work it is shown that a locally graded minimal non CC-group G has an epimorphic image which is a minimal non FC-group and there is no element in G whose centralizer is nilpotent-by-Chernikov. Furthermore Theorem 3 shows that in a locally nilpotent p-group which is a minimal non FC-group, the hypercentral and hypocentral lengths of proper subgroups are bounded.
@article{urn:eudml:doc:44247, title = {On minimal non CC-groups.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {10}, year = {1997}, pages = {31-37}, zbl = {0874.20023}, mrnumber = {MR1452561}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44247} }
Asar, A. Osman; Arikan, A. On minimal non CC-groups.. Revista Matemática de la Universidad Complutense de Madrid, Tome 10 (1997) pp. 31-37. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44247/