For a prime number l and for a finite Galois l-extension of function fields L / K over an algebraically closed field of characteristic p <> l, it is obtained the Galois module structure of the generalized Jacobian associated to L, l and the ramified prime divisors. In the cyclic case an implicit integral representation of the Jacobian is obtained and this representation is compared with the explicit representation.
@article{urn:eudml:doc:44246, title = {Galois module structure of generalized jacobians.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {10}, year = {1997}, pages = {39-51}, zbl = {0882.11064}, mrnumber = {MR1452562}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44246} }
Villa-Salvador, G. D.; Rzedowski-Calderón, M. Galois module structure of generalized jacobians.. Revista Matemática de la Universidad Complutense de Madrid, Tome 10 (1997) pp. 39-51. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44246/