For a prime number l and for a finite Galois l-extension of function fields L / K over an algebraically closed field of characteristic p <> l, it is obtained the Galois module structure of the generalized Jacobian associated to L, l and the ramified prime divisors. In the cyclic case an implicit integral representation of the Jacobian is obtained and this representation is compared with the explicit representation.
@article{urn:eudml:doc:44246,
title = {Galois module structure of generalized jacobians.},
journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
volume = {10},
year = {1997},
pages = {39-51},
zbl = {0882.11064},
mrnumber = {MR1452562},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44246}
}
Villa-Salvador, G. D.; Rzedowski-Calderón, M. Galois module structure of generalized jacobians.. Revista Matemática de la Universidad Complutense de Madrid, Tome 10 (1997) pp. 39-51. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44246/