This note is a continuation of a former paper, where we have discussed the unknotting number of knots with respect to knot diagrams. We will show that for every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knot there exist crossings whose exchange yields the trivial knot, if the third Tait conjecture is true.
@article{urn:eudml:doc:44233, title = {Unknotting number and knot diagram.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {9}, year = {1996}, pages = {359-366}, zbl = {0940.57008}, mrnumber = {MR1430784}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44233} }
Nakanishi, Yasutaka. Unknotting number and knot diagram.. Revista Matemática de la Universidad Complutense de Madrid, Tome 9 (1996) pp. 359-366. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44233/