In a former paper we describe the geometric properties of the space of continuous functions with values in the space of operators acting on a Hilbert space. In particular we show that dent B(L(H)) = ext B(L(H)) if dim H < 8 and card K < 8 and dent B(L(H)) = 0 if dim H < 8 or card K = 8, and x-ext C(K,L(H)) = ext C(K,L(H)).
@article{urn:eudml:doc:44226, title = {Denting point in the space of operator-valued continuous maps.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {9}, year = {1996}, pages = {289-294}, zbl = {0879.46017}, mrnumber = {MR1430779}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44226} }
Grzaslewicz, Ryszard; Hadid, Samir B. Denting point in the space of operator-valued continuous maps.. Revista Matemática de la Universidad Complutense de Madrid, Tome 9 (1996) pp. 289-294. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44226/