In this paper we bring together the different known ways of establishing the continuity of the integral over a uniformly integrable set of functions endowed with the topology of pointwise convergence. We use these techniques to study Pettis integrability, as well as compactness in C(K) spaces endowed with the topology of pointwise convergence on a dense subset D in K.
@article{urn:eudml:doc:44214, title = {Pointwise compactness and continuity of the integral.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {9}, year = {1996}, pages = {221-245}, zbl = {0873.28005}, mrnumber = {MR1435784}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44214} }
Vera, G. Pointwise compactness and continuity of the integral.. Revista Matemática de la Universidad Complutense de Madrid, Tome 9 (1996) pp. 221-245. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44214/