We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.
@article{urn:eudml:doc:44191, title = {An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {8}, year = {1995}, pages = {431-458}, zbl = {0858.65095}, mrnumber = {MR1367939}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44191} }
Rojas-Medar, M. A.; Lorca, S. A. An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.. Revista Matemática de la Universidad Complutense de Madrid, Tome 8 (1995) pp. 431-458. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44191/