In this paper we complete the solution to the equation w+x+y = z, where w, x, y, and z are positive integers and wxyz has the form 2r 3s 5t, with r, s, and t non negative integers. Here we consider the case 1 < w ≤ x ≤ y, the remaining case having been dealt with in our paper: On the Diophantine equation 1+ X + Y = Z, Rocky Mountain J. of Math. This work extends earlier work of the authors in the field of exponential Diophantine equations.
@article{urn:eudml:doc:44123, title = {On the diophantine equation w+x+y = z, with wxyz = 2r 3s 5t.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {8}, year = {1995}, pages = {13-48}, zbl = {0843.11016}, mrnumber = {MR1356433}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44123} }
Alex, L. J.; Foster, L. L. On the diophantine equation w+x+y = z, with wxyz = 2r 3s 5t.. Revista Matemática de la Universidad Complutense de Madrid, Tome 8 (1995) pp. 13-48. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44123/