In this paper we prove that the convergence of (T - Tn)Tn-k to zero in operator norm (plus some technical conditions) is a sufficient condition for Tn to be a strongly stable approximation to T, thus extending some previous results existing in the literature.
@article{urn:eudml:doc:44112,
title = {On strongly stable approximations.},
journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
volume = {7},
year = {1994},
pages = {207-217},
zbl = {0815.65071},
mrnumber = {MR1297511},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44112}
}
Arandiga, F.; Caselles, V. On strongly stable approximations.. Revista Matemática de la Universidad Complutense de Madrid, Tome 7 (1994) pp. 207-217. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44112/