In this paper we prove that the convergence of (T - Tn)Tn-k to zero in operator norm (plus some technical conditions) is a sufficient condition for Tn to be a strongly stable approximation to T, thus extending some previous results existing in the literature.
@article{urn:eudml:doc:44112, title = {On strongly stable approximations.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {7}, year = {1994}, pages = {207-217}, zbl = {0815.65071}, mrnumber = {MR1297511}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44112} }
Arandiga, F.; Caselles, V. On strongly stable approximations.. Revista Matemática de la Universidad Complutense de Madrid, Tome 7 (1994) pp. 207-217. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44112/