On the total (non absolute) curvature of a even dimensional submanifold Xn immersed in Rn+2.
Naveira, A. M.
Revista Matemática de la Universidad Complutense de Madrid, Tome 7 (1994), p. 279-287 / Harvested from Biblioteca Digital de Matemáticas

The total curvatures of the submanifolds immersed in the Euclidean space have been studied mainly by Santaló and Chern-Kuiper. In this paper we give geometrical and topological interpretation of the total (non absolute) curvatures of the even dimensional submanifolds immersed in Rn+2. This gives a generalization of two results obtained by Santaló.

Publié le : 1994-01-01
DMLE-ID : 656
@article{urn:eudml:doc:44067,
     title = {On the total (non absolute) curvature of a even dimensional submanifold Xn immersed in Rn+2.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {7},
     year = {1994},
     pages = {279-287},
     zbl = {0819.53004},
     mrnumber = {MR1297515},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:44067}
}
Naveira, A. M. On the total (non absolute) curvature of a even dimensional submanifold Xn immersed in Rn+2.. Revista Matemática de la Universidad Complutense de Madrid, Tome 7 (1994) pp. 279-287. http://gdmltest.u-ga.fr/item/urn:eudml:doc:44067/