Multiplicity of a foliation on projective spaces along an integral curve.
García, Julio
Revista Matemática de la Universidad Complutense de Madrid, Tome 6 (1993), p. 207-217 / Harvested from Biblioteca Digital de Matemáticas

We compute the global multiplicity of a 1-dimensional foliation along an integral curve in projective spaces. We give a bound in the way of Poincaré problem for a complete intersection curves. In the projective plane, this bound give us a bound of the degree of non irreducible integral curves in function of the degree of the foliation.

Publié le : 1993-01-01
DMLE-ID : 630
@article{urn:eudml:doc:43799,
     title = {Multiplicity of a foliation on projective spaces along an integral curve.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {6},
     year = {1993},
     pages = {207-217},
     zbl = {0801.57018},
     mrnumber = {MR1269752},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:43799}
}
García, Julio. Multiplicity of a foliation on projective spaces along an integral curve.. Revista Matemática de la Universidad Complutense de Madrid, Tome 6 (1993) pp. 207-217. http://gdmltest.u-ga.fr/item/urn:eudml:doc:43799/