We compute the global multiplicity of a 1-dimensional foliation along an integral curve in projective spaces. We give a bound in the way of Poincaré problem for a complete intersection curves. In the projective plane, this bound give us a bound of the degree of non irreducible integral curves in function of the degree of the foliation.
@article{urn:eudml:doc:43799,
title = {Multiplicity of a foliation on projective spaces along an integral curve.},
journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
volume = {6},
year = {1993},
pages = {207-217},
zbl = {0801.57018},
mrnumber = {MR1269752},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:43799}
}
García, Julio. Multiplicity of a foliation on projective spaces along an integral curve.. Revista Matemática de la Universidad Complutense de Madrid, Tome 6 (1993) pp. 207-217. http://gdmltest.u-ga.fr/item/urn:eudml:doc:43799/