We compute the global multiplicity of a 1-dimensional foliation along an integral curve in projective spaces. We give a bound in the way of Poincaré problem for a complete intersection curves. In the projective plane, this bound give us a bound of the degree of non irreducible integral curves in function of the degree of the foliation.
@article{urn:eudml:doc:43799, title = {Multiplicity of a foliation on projective spaces along an integral curve.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {6}, year = {1993}, pages = {207-217}, zbl = {0801.57018}, mrnumber = {MR1269752}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:43799} }
García, Julio. Multiplicity of a foliation on projective spaces along an integral curve.. Revista Matemática de la Universidad Complutense de Madrid, Tome 6 (1993) pp. 207-217. http://gdmltest.u-ga.fr/item/urn:eudml:doc:43799/