A class of locally convex vector spaces with a special Schauder decomposition is considered. It is proved that the elements of this class, which includes some spaces naturally appearing in infinite dimensional holomorphy, are quasinormable though in general they are neither metrizable nor Schwartz spaces.
@article{urn:eudml:doc:43673, title = {Quasinormability of some spaces of holomorphic mappings.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {3}, year = {1990}, pages = {13-17}, zbl = {0709.46017}, mrnumber = {MR1060276}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:43673} }
Isidro, José M. Quasinormability of some spaces of holomorphic mappings.. Revista Matemática de la Universidad Complutense de Madrid, Tome 3 (1990) pp. 13-17. http://gdmltest.u-ga.fr/item/urn:eudml:doc:43673/