Structure of measures on topological spaces.
María, José L. de ; Rodríguez Salinas, Baltasar
Revista Matemática de la Universidad Complutense de Madrid, Tome 2 (1989), p. 103-118 / Harvested from Biblioteca Digital de Matemáticas

The Radon spaces of type (T), i.e., topological spaces for which every finite Borel measure on Omega is T-additive and T-regular are characterized. The class of these spaces is very wide and in particular it contains the Radon spaces. We extend the results of Marczewski an Sikorski to the sygma-metrizable spaces and to the subsets of the Banach spaces endowed with the weak topology. Finally, the completely additive families of measurable subsets related with the works of Hansell, Koumoullis, and Fremlin are studied.

Publié le : 1989-01-01
DMLE-ID : 594
@article{urn:eudml:doc:43409,
     title = {Structure of measures on topological spaces.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {2},
     year = {1989},
     pages = {103-118},
     zbl = {0744.28013},
     mrnumber = {MR1057212},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:43409}
}
María, José L. de; Rodríguez Salinas, Baltasar. Structure of measures on topological spaces.. Revista Matemática de la Universidad Complutense de Madrid, Tome 2 (1989) pp. 103-118. http://gdmltest.u-ga.fr/item/urn:eudml:doc:43409/