The main result of this paper is the following: A separable Banach space X is reflexive if and only if the infimum of the Gelfand numbers of any bounded linear operator defined on X can be computed by means of just one sequence on nested, closed, finite codimensional subspaces with null intersection.
@article{urn:eudml:doc:43226, title = {Two geometric constants for operators acting on a separable Banach space.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {1}, year = {1988}, pages = {23-30}, zbl = {0668.47018}, mrnumber = {MR0977039}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:43226} }
Martín Peinador, E.; Induráin, E.; Plans Sanz de Bremond, A.; Rodes Usan, A. A. Two geometric constants for operators acting on a separable Banach space.. Revista Matemática de la Universidad Complutense de Madrid, Tome 1 (1988) pp. 23-30. http://gdmltest.u-ga.fr/item/urn:eudml:doc:43226/