Differential equations driven by fractional Brownian motion.
Nualart, David ; Rascanu, Aurel
Collectanea Mathematica, Tome 53 (2002), p. 55-81 / Harvested from Biblioteca Digital de Matemáticas

A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/2 is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.

Publié le : 2002-01-01
DMLE-ID : 539
@article{urn:eudml:doc:42846,
     title = {Differential equations driven by fractional Brownian motion.},
     journal = {Collectanea Mathematica},
     volume = {53},
     year = {2002},
     pages = {55-81},
     zbl = {1018.60057},
     mrnumber = {MR1893308},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:42846}
}
Nualart, David; Rascanu, Aurel. Differential equations driven by fractional Brownian motion.. Collectanea Mathematica, Tome 53 (2002) pp. 55-81. http://gdmltest.u-ga.fr/item/urn:eudml:doc:42846/