Cauchy multiplication and periodic functions (mod r).
Haukkanen, Pentti ; Sivaramakrishnan, R.
Collectanea Mathematica, Tome 42 (1991), p. 33-44 / Harvested from Biblioteca Digital de Matemáticas

We analise periodic functions (mod r), keeping Cauchy multiplication as the basic tool, and pay particular attention to even functions (mod r) having the property f(n) = f((n,r)) for all n. We provide some new aspects into the Hilbert space structure of even functions (mod r) and make use of linera transformations to interpret the known number-theoretic formulae involving solutions of congruences.

Publié le : 1991-01-01
DMLE-ID : 487
@article{urn:eudml:doc:42426,
     title = {Cauchy multiplication and periodic functions (mod r).},
     journal = {Collectanea Mathematica},
     volume = {42},
     year = {1991},
     pages = {33-44},
     zbl = {0769.11001},
     mrnumber = {MR1181060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:42426}
}
Haukkanen, Pentti; Sivaramakrishnan, R. Cauchy multiplication and periodic functions (mod r).. Collectanea Mathematica, Tome 42 (1991) pp. 33-44. http://gdmltest.u-ga.fr/item/urn:eudml:doc:42426/