In this paper we study an integral transformation introduced by E. Kratzel in spaces of distributions. This transformation is a generalization of the Laplace transform. We employ the usually called kernel method. Analyticity, boundedness, and inversion theoremes are established for the generalized transformation.
@article{urn:eudml:doc:42417, title = {A Kratzel's integral transformation of distributions.}, journal = {Collectanea Mathematica}, volume = {42}, year = {1991}, pages = {11-32}, zbl = {0772.46019}, mrnumber = {MR1181059}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:42417} }
Barrios, J. A.; Betancor, J. J. A Kratzel's integral transformation of distributions.. Collectanea Mathematica, Tome 42 (1991) pp. 11-32. http://gdmltest.u-ga.fr/item/urn:eudml:doc:42417/