In this paper we study an integral transformation introduced by E. Kratzel in spaces of distributions. This transformation is a generalization of the Laplace transform. We employ the usually called kernel method. Analyticity, boundedness, and inversion theoremes are established for the generalized transformation.
@article{urn:eudml:doc:42417,
title = {A Kratzel's integral transformation of distributions.},
journal = {Collectanea Mathematica},
volume = {42},
year = {1991},
pages = {11-32},
zbl = {0772.46019},
mrnumber = {MR1181059},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:42417}
}
Barrios, J. A.; Betancor, J. J. A Kratzel's integral transformation of distributions.. Collectanea Mathematica, Tome 42 (1991) pp. 11-32. http://gdmltest.u-ga.fr/item/urn:eudml:doc:42417/