In the paper we consider a class of Orlicz spaces equipped with the Orlicz norm over a non-negative, complete and sigma-finite measure space (T,Sigma,mu), which covers, among others, Orlicz spaces isomorphic to L-infinite and the interpolation space L1 + L-infinite. We give some necessary conditions for a point x from the unit sphere to be extreme. Applying this characterization, in the case of an atomless measure mu, we find a description of the set of extreme points of L1 + L-infinite which corresponds with the result obtained by R. Graslewicz and H. Schaefer [3] and H. Schaefer [13].
@article{urn:eudml:doc:42034, title = {On extreme points of Orlicz spaces with Orlicz norm.}, journal = {Collectanea Mathematica}, volume = {44}, year = {1993}, pages = {135-146}, zbl = {0838.46019}, mrnumber = {MR1280733}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:42034} }
Hudzik, Henryk; Wisla, Marek. On extreme points of Orlicz spaces with Orlicz norm.. Collectanea Mathematica, Tome 44 (1993) pp. 135-146. http://gdmltest.u-ga.fr/item/urn:eudml:doc:42034/