On rough and smooth neighbors.
Banks, William D. ; Luca, Florian ; Shparlinski, Igor E.
Revista Matemática de la Universidad Complutense de Madrid, Tome 20 (2007), p. 109-118 / Harvested from Biblioteca Digital de Matemáticas

We study the behavior of the arithmetic functions defined by

F(n) = P+(n) / P-(n+1) and G(n) = P+(n+1) / P-(n) (n ≥ 1)

where P+(k) and P-(k) denote the largest and the smallest prime factors, respectively, of the positive integer k.

Publié le : 2007-01-01
DMLE-ID : 4401
@article{urn:eudml:doc:41928,
     title = {On rough and smooth neighbors.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {20},
     year = {2007},
     pages = {109-118},
     mrnumber = {MR2310580},
     zbl = {1134.11035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41928}
}
Banks, William D.; Luca, Florian; Shparlinski, Igor E. On rough and smooth neighbors.. Revista Matemática de la Universidad Complutense de Madrid, Tome 20 (2007) pp. 109-118. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41928/