We study the behavior of the arithmetic functions defined by
F(n) = P+(n) / P-(n+1) and G(n) = P+(n+1) / P-(n) (n ≥ 1)
where P+(k) and P-(k) denote the largest and the smallest prime factors, respectively, of the positive integer k.
@article{urn:eudml:doc:41928, title = {On rough and smooth neighbors.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {20}, year = {2007}, pages = {109-118}, mrnumber = {MR2310580}, zbl = {1134.11035}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41928} }
Banks, William D.; Luca, Florian; Shparlinski, Igor E. On rough and smooth neighbors.. Revista Matemática de la Universidad Complutense de Madrid, Tome 20 (2007) pp. 109-118. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41928/