We present a combinatorial mechanism for counting certain objects associated to a variety over a finite field. The basic example is that of counting conjugacy classes of the general linear group. We discuss how the method applies to counting these and also to counting unipotent matrices and pairs of commuting matrices.
[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].
@article{urn:eudml:doc:41922, title = {Counting colorings on varieties.}, journal = {Publicacions Matem\`atiques}, year = {2007}, pages = {209-220}, zbl = {1208.11130}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41922} }
Rodríguez-Villegas, Fernando. Counting colorings on varieties.. Publicacions Matemàtiques, (2007), pp. 209-220. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41922/