Given an elliptic curve E and a finite subgroup G, Vélu's formulae concern to a separable isogeny IG: E → E' with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P+G as the difference between the abscissa of IG(P) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstrass coefficients of E' as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P+G. Simultaneously, we obtain an efficient way of performing computations concerning the isogeny when G is a rational group.
[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].
@article{urn:eudml:doc:41919, title = {Generalization of V\'elu's formulae for isogenies between elliptic curves.}, journal = {Publicacions Matem\`atiques}, year = {2007}, pages = {147-163}, zbl = {1183.11031}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41919} }
Miret Biosca, Josep M.; Moreno, Ramiro; Rio, Anna. Generalization of Vélu's formulae for isogenies between elliptic curves.. Publicacions Matemàtiques, (2007), pp. 147-163. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41919/