We obtain new bounds for the integer Chebyshev constant of intervals [p/q, r/s] where p, q, r and s are non-negative integers such that qr - ps = 1. As a consequence of the methods used, we improve the known lower bound for the trace of totally positive algebraic integers.
[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].
@article{urn:eudml:doc:41912, title = {The integer Chebyshev constant of Farey intervals.}, journal = {Publicacions Matem\`atiques}, year = {2007}, pages = {11-27}, zbl = {1183.11040}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41912} }
Aguirre, Julián; Peral, Juan Carlos. The integer Chebyshev constant of Farey intervals.. Publicacions Matemàtiques, (2007), pp. 11-27. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41912/