Structure of the Hardy operator related to Laguerre polynomials and the Euler differential equation.
Kruglyak, Natan ; Maligranda, Lech ; Persson, Lars-Erik
Revista Matemática de la Universidad Complutense de Madrid, Tome 19 (2006), p. 467-476 / Harvested from Biblioteca Digital de Matemáticas

We present a direct proof of a known result that the Hardy operator Hf(x) = 1/x ∫0 x f(t) dt in the space L2 = L2(0, ∞) can be written as H = I - U, where U is a shift operator (Uen = en+1, n ∈ Z) for some orthonormal basis {en}. The basis {en} is constructed by using classical Laguerre polynomials. We also explain connections with the Euler differential equation of the first order y' - 1/x y = g and point out some generalizations to the case with weighted Lw 2(a, b) spaces.

Publié le : 2006-01-01
DMLE-ID : 4386
@article{urn:eudml:doc:41910,
     title = {Structure of the Hardy operator related to Laguerre polynomials and the Euler differential equation.},
     journal = {Revista Matem\'atica de la Universidad Complutense de Madrid},
     volume = {19},
     year = {2006},
     pages = {467-476},
     zbl = {1121.47025},
     mrnumber = {MR2241439},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41910}
}
Kruglyak, Natan; Maligranda, Lech; Persson, Lars-Erik. Structure of the Hardy operator related to Laguerre polynomials and the Euler differential equation.. Revista Matemática de la Universidad Complutense de Madrid, Tome 19 (2006) pp. 467-476. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41910/