The standard Berezin and Berezin-Toeplitz quantizations on a Kähler manifold are based on operator symbols and on Toeplitz operators, respectively, on weighted L2-spaces of holomorphic functions (weighted Bergman spaces). In both cases, the construction basically uses only the fact that these spaces have a reproducing kernel. We explore the possibilities of using other function spaces with reproducing kernels instead, such as L2-spaces of harmonic functions, Sobolev spaces, Sobolev spaces of holomorphic functions, and so on. Both positive and negative results are obtained.
@article{urn:eudml:doc:41908, title = {Berezin and Berezin-Toeplitz quantizations for general function spaces.}, journal = {Revista Matem\'atica de la Universidad Complutense de Madrid}, volume = {19}, year = {2006}, pages = {385-430}, zbl = {1122.53053}, mrnumber = {MR2241437}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41908} }
Englis, Miroslav. Berezin and Berezin-Toeplitz quantizations for general function spaces.. Revista Matemática de la Universidad Complutense de Madrid, Tome 19 (2006) pp. 385-430. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41908/