We consider complex dynamics of a critically finite holomorphic map from Pk to Pk, which has symmetries associated with the symmetric group Sk+2 acting on Pk, for each k ≥1. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.
@article{urn:eudml:doc:41898,
title = {Dynamics of symmetric holomorphic maps on projective spaces.},
journal = {Publicacions Matem\`atiques},
year = {2007},
pages = {333-344},
zbl = {1133.37320},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41898}
}
Ueno, Kohei. Dynamics of symmetric holomorphic maps on projective spaces.. Publicacions Matemàtiques, (2007), pp. 333-344. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41898/