We consider complex dynamics of a critically finite holomorphic map from Pk to Pk, which has symmetries associated with the symmetric group Sk+2 acting on Pk, for each k ≥1. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.
@article{urn:eudml:doc:41898, title = {Dynamics of symmetric holomorphic maps on projective spaces.}, journal = {Publicacions Matem\`atiques}, year = {2007}, pages = {333-344}, zbl = {1133.37320}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41898} }
Ueno, Kohei. Dynamics of symmetric holomorphic maps on projective spaces.. Publicacions Matemàtiques, (2007), pp. 333-344. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41898/