Prolongation of linear semibasic tangent valued forms to product preserving gauge bundles of vector bundles.
Mikulski, Wlodzimierz M.
Extracta Mathematicae, Tome 21 (2006), p. 273-286 / Harvested from Biblioteca Digital de Matemáticas

Let A be a Weil algebra and V be an A-module with dimR V < ∞. Let E → M be a vector bundle and let TA,VE → TAM be the vector bundle corresponding to (A,V). We construct canonically a linear semibasic tangent valued p-form TA,Vφ : TA,V E → ΛpT*TAM ⊗­TAM TTA,VE on TA,VE → TAM from a linear semibasic tangent valued p-form φ : E → ΛpT*M ⊗­ TE on E → M. For the Frolicher-Nijenhuis bracket we prove that [[TA,Vφ, TA,Vψ]] = TA,V ([[φ,ψ]]) for any linear semibasic tangent valued p- and q-forms φ and ψ on E → M. We apply these results to linear general connections on E → M.

Publié le : 2006-01-01
DMLE-ID : 4345
@article{urn:eudml:doc:41865,
     title = {Prolongation of linear semibasic tangent valued forms to product preserving gauge bundles of vector bundles.},
     journal = {Extracta Mathematicae},
     volume = {21},
     year = {2006},
     pages = {273-286},
     zbl = {1131.58002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41865}
}
Mikulski, Wlodzimierz M. Prolongation of linear semibasic tangent valued forms to product preserving gauge bundles of vector bundles.. Extracta Mathematicae, Tome 21 (2006) pp. 273-286. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41865/