Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold.
Kurek, Jan ; Mikulski, Wlodzimierz M.
Extracta Mathematicae, Tome 21 (2006), p. 159-166 / Harvested from Biblioteca Digital de Matemáticas

We describe all canonical 2-forms Λ(ω) on the r-th order tangent bundle TrM = Jr 0 (R;M) of a symplectic manifold (M, ω). As a corollary we deduce that all canonical symplectic structures Λ(ω) on TrM over a symplectic manifold (M, ω) are of the form Λ(ω) = Σr k=0 αkω(k) for all real numbers αk with αr ≠ 0, where ω(k) is the (k)-lift (in the sense of A. Morimoto) of ω to TrM.

Publié le : 2006-01-01
DMLE-ID : 4337
@article{urn:eudml:doc:41856,
     title = {Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold.},
     journal = {Extracta Mathematicae},
     volume = {21},
     year = {2006},
     pages = {159-166},
     zbl = {1141.58002},
     mrnumber = {MR2292745},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41856}
}
Kurek, Jan; Mikulski, Wlodzimierz M. Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold.. Extracta Mathematicae, Tome 21 (2006) pp. 159-166. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41856/