Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equation
D(μ) ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;
where f: G → C to be determined is a measurable and essentially bounded function.
@article{urn:eudml:doc:41851, title = {On generalized d'Alembert functional equation.}, journal = {Extracta Mathematicae}, volume = {21}, year = {2006}, pages = {67-82}, zbl = {1112.39016}, mrnumber = {MR2258342}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41851} }
Akkouchi, Mohamed; Bakali, Allal; Bouikhalene, Belaid; El Qorachi, El Houcien. On generalized d'Alembert functional equation.. Extracta Mathematicae, Tome 21 (2006) pp. 67-82. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41851/