Let R be a perfect commutative unital ring without zero divisors of char(R) = p and let G be a multiplicative abelian group. Then the Warfield p-invariants of the normed unit group V (RG) are computed only in terms of R and G. These cardinal-to-ordinal functions, combined with the Ulm-Kaplansky p-invariants, completely determine the structure of V (RG) whenever G is a Warfield p-mixed group.
@article{urn:eudml:doc:41839, title = {Warfield invariants in abelian group rings.}, journal = {Extracta Mathematicae}, volume = {20}, year = {2005}, pages = {233-241}, zbl = {1117.16022}, mrnumber = {MR2243340}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41839} }
Danchev, Peter V. Warfield invariants in abelian group rings.. Extracta Mathematicae, Tome 20 (2005) pp. 233-241. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41839/