Rough Marcinkiewicz integral operators on product spaces.
Al-Qassem, Hussein M.
Collectanea Mathematica, Tome 56 (2005), p. 275-297 / Harvested from Biblioteca Digital de Matemáticas

In this paper, we study the Marcinkiewicz integral operators MΩ,h on the product space Rn x Rm. We prove that MΩ,h is bounded on Lp(Rn x Rm) (1< p < ∞) provided that h is a bounded radial function and Ω is a function in certain block space Bq (0,0) (Sn−1 x Sm−1) for some q > 1. We also establish the optimality of our condition in the sense that the space Bq (0,0) (Sn−1 x Sm−1) cannot be replaced by Bq (0,r) (Sn−1 x Sm−1) for any −1 < r < 0. Our results improve some known results.

Publié le : 2005-01-01
DMLE-ID : 4315
@article{urn:eudml:doc:41832,
     title = {Rough Marcinkiewicz integral operators on product spaces.},
     journal = {Collectanea Mathematica},
     volume = {56},
     year = {2005},
     pages = {275-297},
     zbl = {1091.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41832}
}
Al-Qassem, Hussein M. Rough Marcinkiewicz integral operators on product spaces.. Collectanea Mathematica, Tome 56 (2005) pp. 275-297. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41832/