Let Φ be an N-function, then the Jung constants of the Orlicz function spaces LΦ[0,1] generated by Φ equipped with the Luxemburg and Orlicz norms have the exact value:
(i) If FΦ(t) = tφ(t)/Φ(t) is decreasing and 1 < CΦ < 2, then
JC(L(Φ)[0,1]) = JC(LΦ[0,1]) = 21/CΦ-1;
(ii) If FΦ(t) is increasing and CΦ > 2, then
JC(L(Φ)[0,1]) = JC(LΦ[0,1])=2-1/CΦ ,
where CΦ= limt→+∞ tφ(t)/Φ(t).
@article{urn:eudml:doc:41830, title = {The exact value of Jung constants in a class of Orlicz function spaces.}, journal = {Collectanea Mathematica}, volume = {56}, year = {2005}, pages = {253-263}, zbl = {1102.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41830} }
Yan, Y. Q. The exact value of Jung constants in a class of Orlicz function spaces.. Collectanea Mathematica, Tome 56 (2005) pp. 253-263. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41830/