On surfaces of general type with pg = q = 1, K2 = 3.
Polizzi, Francesco
Collectanea Mathematica, Tome 56 (2005), p. 181-234 / Harvested from Biblioteca Digital de Matemáticas

The moduli space M of surfaces of general type with pg = q = 1, K2 = g = 3 (where g is the genus of the Albanese fibration) was constructed by Catanese and Ciliberto in [14]. In this paper we characterize the subvariety M2 ⊂ M corresponding to surfaces containing a genus 2 pencil, and moreover we show that there exists a non-empty, dense subset M0 ⊂ M which parametrizes isomorphism classes of surfaces with birational bicanonical map.

Publié le : 2005-01-01
DMLE-ID : 4311
@article{urn:eudml:doc:41828,
     title = {On surfaces of general type with pg = q = 1, K2 = 3.},
     journal = {Collectanea Mathematica},
     volume = {56},
     year = {2005},
     pages = {181-234},
     zbl = {1084.14038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41828}
}
Polizzi, Francesco. On surfaces of general type with pg = q = 1, K2 = 3.. Collectanea Mathematica, Tome 56 (2005) pp. 181-234. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41828/