Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that
1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0
for any funcion φ ∈ C∞(S2).
@article{urn:eudml:doc:41825, title = {On the Moser-Onofri and Pr\'ekopa-Leindler inequalities.}, journal = {Collectanea Mathematica}, volume = {56}, year = {2005}, pages = {143-156}, zbl = {1088.58007}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41825} }
Ghigi, Alessandro. On the Moser-Onofri and Prékopa-Leindler inequalities.. Collectanea Mathematica, Tome 56 (2005) pp. 143-156. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41825/