Interior estimates for solutions of Abreu's equation.
Donaldson, Simon K.
Collectanea Mathematica, Tome 56 (2005), p. 103-142 / Harvested from Biblioteca Digital de Matemáticas

This paper develops various estimates for solutions of a nonlinear, fouth order PDE which corresponds to prescribing the scalar curvature of a toric Kähler metric. The results combine techniques from Riemannian geometry and from the theory of Monge-Ampère equations.

Publié le : 2005-01-01
DMLE-ID : 4308
@article{urn:eudml:doc:41824,
     title = {Interior estimates for solutions of Abreu's equation.},
     journal = {Collectanea Mathematica},
     volume = {56},
     year = {2005},
     pages = {103-142},
     zbl = {1085.53063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41824}
}
Donaldson, Simon K. Interior estimates for solutions of Abreu's equation.. Collectanea Mathematica, Tome 56 (2005) pp. 103-142. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41824/