We examine several scalar oscillatory singular integrals involving a real-analytic phase function φ(s,t) of two real variables and illustrate how one can use the Newton diagram of φ to efficiently analyse these objects. We use these results to bound certain singular integral operators.
@article{urn:eudml:doc:41786, title = {Singular integrals and the Newton diagram.}, journal = {Collectanea Mathematica}, volume = {57}, year = {2006}, pages = {171-194}, zbl = {1213.42024}, mrnumber = {MR2264209}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41786} }
Carbery, Anthony; Wainger, Stephen; Wright, James. Singular integrals and the Newton diagram.. Collectanea Mathematica, Tome 57 (2006) pp. 171-194. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41786/