By analyzing the connection between complex Hadamard matrices and spectral sets, we prove the direction "spectral ⇒ tile" of the Spectral Set Conjecture, for all sets A of size |A| ≤ 5, in any finite Abelian group. This result is then extended to the infinite grid Zd for any dimension d, and finally to Rd.
@article{urn:eudml:doc:41780, title = {Complex Hadamard matrices and the spectral set conjecture.}, journal = {Collectanea Mathematica}, volume = {57}, year = {2006}, pages = {281-291}, zbl = {1134.42313}, mrnumber = {MR2264214}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41780} }
Kolountzakis, Mihail N.; Matolcsi, Máté. Complex Hadamard matrices and the spectral set conjecture.. Collectanea Mathematica, Tome 57 (2006) pp. 281-291. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41780/