Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D.
In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y ∩ D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fα}|α|≤m on M, so that there exists a holomorphic function in the Bergman-Sobolev space such that Dαf |M = fα for all |α| ≤ m.
@article{urn:eudml:doc:41756, title = {Division and extension in weighted Bergman-Sobolev spaces.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {837-859}, mrnumber = {MR1210023}, zbl = {0777.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41756} }
Ortega, Joaquín M.; Fàbrega, Joan. Division and extension in weighted Bergman-Sobolev spaces.. Publicacions Matemàtiques, Tome 36 (1992) pp. 837-859. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41756/