In this note we prove that the Local Time at zero for a multiparametric Wiener process belongs to the Sobolev space Dk - 1/2 - ε,2 for any ε > 0. We do this computing its Wiener chaos expansion. We see also that this expansion converges almost surely. Finally, using the same technique we prove similar results for a renormalized Local Time for the autointersections of a planar Brownian motion.
@article{urn:eudml:doc:41755, title = {Chaos expansions and local times.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {827-836}, mrnumber = {MR1210022}, zbl = {0787.60060}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41755} }
Nualart, David; Vives, Josep. Chaos expansions and local times.. Publicacions Matemàtiques, Tome 36 (1992) pp. 827-836. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41755/