Non-obstructed subcanonical space curves.
Miró-Roig, Rosa M.
Publicacions Matemàtiques, Tome 36 (1992), p. 761-772 / Harvested from Biblioteca Digital de Matemáticas

Recall that a closed subscheme X ⊂ P is non-obstructed if the corresponding point x of the Hilbert scheme Hilb p(t) n is non-singular. A geometric characterization of non-obstructedness is not known even for smooth space curves. The goal of this work is to prove that subcanonical k-Buchsbaum, k ≤ 2, space curves are non-obstructed. As a main tool we use Serre's correspondence between subcanonical curves and vector bundles.

Publié le : 1992-01-01
DMLE-ID : 4241
@article{urn:eudml:doc:41751,
     title = {Non-obstructed subcanonical space curves.},
     journal = {Publicacions Matem\`atiques},
     volume = {36},
     year = {1992},
     pages = {761-772},
     mrnumber = {MR1210018},
     zbl = {0786.14018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41751}
}
Miró-Roig, Rosa M. Non-obstructed subcanonical space curves.. Publicacions Matemàtiques, Tome 36 (1992) pp. 761-772. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41751/