Some remarks on almost finitely generated nilpotent groups.
Hilton, Peter ; Militello, Robert
Publicacions Matemàtiques, Tome 36 (1992), p. 655-662 / Harvested from Biblioteca Digital de Matemáticas

We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions:

{fg} ⊂ {fg-like} ⊂ {fgp}.

We examine the extent to which fg-like nilpotent groups satisfy the axioms for a Serre class. We obtain a complete answer only in the case that [G, G] is finite. (The collection of fgp nilpotent groups is known to form a Serre class in the extended sense).

Publié le : 1992-01-01
DMLE-ID : 4233
@article{urn:eudml:doc:41742,
     title = {Some remarks on almost finitely generated nilpotent groups.},
     journal = {Publicacions Matem\`atiques},
     volume = {36},
     year = {1992},
     pages = {655-662},
     mrnumber = {MR1209830},
     zbl = {0826.20032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41742}
}
Hilton, Peter; Militello, Robert. Some remarks on almost finitely generated nilpotent groups.. Publicacions Matemàtiques, Tome 36 (1992) pp. 655-662. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41742/