We conjecture that every finite group G acting on a contractible CW-complex X of dimension 2 has at least one fixed point. We prove this in the case where G is solvable, and under this additional hypothesis, the result holds for X acyclic.
@article{urn:eudml:doc:41726,
title = {On finite groups acting on acyclic complexes of dimension two.},
journal = {Publicacions Matem\`atiques},
volume = {36},
year = {1992},
pages = {463-466},
mrnumber = {MR1209816},
zbl = {0839.57025},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41726}
}
Casacuberta, Carles; Dicks, Warren. On finite groups acting on acyclic complexes of dimension two.. Publicacions Matemàtiques, Tome 36 (1992) pp. 463-466. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41726/