We conjecture that every finite group G acting on a contractible CW-complex X of dimension 2 has at least one fixed point. We prove this in the case where G is solvable, and under this additional hypothesis, the result holds for X acyclic.
@article{urn:eudml:doc:41726, title = {On finite groups acting on acyclic complexes of dimension two.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {463-466}, mrnumber = {MR1209816}, zbl = {0839.57025}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41726} }
Casacuberta, Carles; Dicks, Warren. On finite groups acting on acyclic complexes of dimension two.. Publicacions Matemàtiques, Tome 36 (1992) pp. 463-466. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41726/