In this paper we prove a general result for the ring H(U) of the analytic functions on an open set U in the complex plane which implies that H(U) has not unit-1-stable rank and that has some other interesting consequences. We prove also that in H(U) there are no totally reducible elements different from the zero function.
@article{urn:eudml:doc:41724, title = {On the unit-1-stable rank of rings of analytic functions.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {439-447}, mrnumber = {MR1209814}, zbl = {0784.46034}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41724} }
Carmona, Joan Josep; Cufí, Julià; Menal, Pere. On the unit-1-stable rank of rings of analytic functions.. Publicacions Matemàtiques, Tome 36 (1992) pp. 439-447. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41724/