In this paper we prove a general result for the ring H(U) of the analytic functions on an open set U in the complex plane which implies that H(U) has not unit-1-stable rank and that has some other interesting consequences. We prove also that in H(U) there are no totally reducible elements different from the zero function.
@article{urn:eudml:doc:41724,
title = {On the unit-1-stable rank of rings of analytic functions.},
journal = {Publicacions Matem\`atiques},
volume = {36},
year = {1992},
pages = {439-447},
mrnumber = {MR1209814},
zbl = {0784.46034},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41724}
}
Carmona, Joan Josep; Cufí, Julià; Menal, Pere. On the unit-1-stable rank of rings of analytic functions.. Publicacions Matemàtiques, Tome 36 (1992) pp. 439-447. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41724/