A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.
Bruna, Joaquim
Publicacions Matemàtiques, Tome 36 (1992), p. 421-426 / Harvested from Biblioteca Digital de Matemáticas

We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.

Publié le : 1992-01-01
DMLE-ID : 4215
@article{urn:eudml:doc:41722,
     title = {A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.},
     journal = {Publicacions Matem\`atiques},
     volume = {36},
     year = {1992},
     pages = {421-426},
     mrnumber = {MR1209812},
     zbl = {0781.31003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41722}
}
Bruna, Joaquim. A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.. Publicacions Matemàtiques, Tome 36 (1992) pp. 421-426. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41722/