We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.
@article{urn:eudml:doc:41722, title = {A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {421-426}, mrnumber = {MR1209812}, zbl = {0781.31003}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41722} }
Bruna, Joaquim. A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.. Publicacions Matemàtiques, Tome 36 (1992) pp. 421-426. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41722/