We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.
@article{urn:eudml:doc:41722,
title = {A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.},
journal = {Publicacions Matem\`atiques},
volume = {36},
year = {1992},
pages = {421-426},
mrnumber = {MR1209812},
zbl = {0781.31003},
language = {en},
url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41722}
}
Bruna, Joaquim. A uniqueness theorem for invariantly harmonic functions in the unit ball of Cn.. Publicacions Matemàtiques, Tome 36 (1992) pp. 421-426. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41722/