We first prove that every countably presented module is a pure epimorphic image of a countably generated pure-projective module, and by using this we prove that if every countably generated pure-projective module is pure-injective then every module is pure-injective, while if in any countably generated pure-projective module every countably generated pure-projective pure submodule is a direct summand then every module is pure-projective.
@article{urn:eudml:doc:41720, title = {Behavior of countably generated pure-projective modules.}, journal = {Publicacions Matem\`atiques}, volume = {36}, year = {1992}, pages = {401-406}, mrnumber = {MR1209810}, zbl = {0792.16001}, language = {en}, url = {http://dml.mathdoc.fr/item/urn:eudml:doc:41720} }
Azumaya, Goro. Behavior of countably generated pure-projective modules.. Publicacions Matemàtiques, Tome 36 (1992) pp. 401-406. http://gdmltest.u-ga.fr/item/urn:eudml:doc:41720/